厌氧生物处理。有些难降解工业废水的COD可达到105mg/L级别,且其中生物可利用性低的有机污染物占比高,即使经过前述的预处理步骤,废水中的有机物浓度仍保持较高浓度。相较于好氧生物处理,厌氧生物处理具有能耗成本低、剩余污泥产生少、可实现能量回收的特点,对于高有机负荷废水的处理具备独特的优势,一般在预处理单元之后,紧接着设置的是厌氧处理单元。升流式厌氧污泥床(Up-flowanaerobicsludgeblanket,UASB)是从20世纪70年代发展起来的一种厌氧生物处理技术,由于容积负荷高、生物量高、微生物种群丰富等优点,至今仍在工业废水处理工程中广泛应用。UASB的技术中心在于反应器内由厌氧颗粒污泥形成的污泥床,但相应地为培养颗粒污泥所需的启动期较长;此外,UASB还存在容易短流、堵塞、颗粒污泥裂解、污泥流失等问题。因此,在UASB的基础上,通过改变反应器构型和优化运行方式等来强化泥水混合效率和污泥保留能力,进一步发展衍生出膨胀颗粒污泥床(Expandedgranularsludgebed,EGSB)、折流式厌氧反应器(Anaerobicbaffledreactor,ABR)、内/外循环式厌氧反应器(Internal/Externalcirculationanaerobicreactor,IC/ECAR)等工艺,有效提升了厌氧处理的适用性和效能。。 污水治理菌受哪些因素影响,请致电江苏利水环保。山西除磷厌氧菌原理
有研究在处理石油精炼废水时,经过35d的启动期,SBR系统内的颗粒污泥粒径达到,稳定运行期间对COD和石油组分的去除率分别达到95%和90%。Munoz-Palazon等处理含酚废水时,经过90d的培养使颗粒污泥粒径达到1mm左右,并可实现对300mg/L酚酸的完全去除,而更高的酚酸浓度则易使颗粒污泥失稳解体。Farooqi等搭建中试规模的SBR处理含15~20mg/L可吸附有机卤素(AOX)的造纸废水,经过200d左右的选择和驯化才使颗粒污泥的形成进入稳定阶段,颗粒污泥的粒径达到2~4mm。该技术的缺陷就在于颗粒污泥的培养难度大、启动期较长,而且容易出现颗粒污泥解体现象而导致工艺失败。影响污泥颗粒形成和稳定的因素有物理性的、化学性的和生物性的,如接种污泥特性、有机物负荷、底物成分、水力剪切力、饥饿时间、污泥沉淀时间、排泥方式等。目前基于工艺运行条件等外在因素的调控及单一影响因素的实验研究等,都未能很好地阐释其稳定机制。由此,大量研究开始关注颗粒污泥形成的内在机制如细菌群体感应效应(Quorumsensing,QS),并利用相应的人工调控策略促进颗粒污泥的形成和稳定。 山西除磷厌氧菌原理江苏利水环保可供应各类厌氧菌,有需要请联系我们。
厌氧生物处理技术具有诸多优点,但对于高浓度有机工业废水,很多污染物不具备厌氧降解途径,导致厌氧处理单元的出水COD等很难达标,因此后续一般都需要设置好氧生物处理单元。生物膜法依靠附着生长在填料表面的微生物对有机物进行转化和降解,相比于活性污泥群落,多样性较高、结构较稳定的生物膜群落在应对工业废水中难降解和有毒有害物质冲击时,具有一定的优势。移动床生物膜反应器、序批式生物膜反应器、曝气生物滤池等是常见的生物膜工艺,有效应用于去除煤热解废水中的苯酚和氨氮、去除印染废水中的五氯苯酚和邻苯二甲酸碳酸酯以及去除养殖废水中的多种等。为强化常规活性污泥法的效能,将絮状活性污泥培养为好氧颗粒污泥(Aerobicgranularsludge,AGS)的技术近来也成为关注热点。AGS是在特定环境条件下微生物通过分泌胞外聚合物并自絮凝形成的球状或椭球状细胞聚集体,是一种不需要载体材料的特殊“生物膜”。与絮状活性污泥相比,颗粒污泥结构严实紧密,具有更高的沉降速率,可节省沉淀池的占地面积;颗粒污泥层状的结构保证了氧浓度梯度,可营造出适合不同的微生物生存的微环境,从而使其具备同步脱氮除磷的性能。
硝化系统是微生物脱氮的重要一环。《城镇污水处理厂污染物排放标准》中所规定的出水氨氮标准在水温不高于12摄氏度时有一定程度的放宽,这是因为低温环境对生物处理系统中的硝化反应较早带来影响。身为化能自养菌的硝化细菌相对其他微生物本来就较为脆弱,在冬季低温环境和常见的进水水量、水质冲击的双重打击下非常容易死亡,从而带来硝化系统崩溃,且崩溃后恢复难度较大,恢复速度慢。对于硝化系统可以采取的准备措施有以下几点:足量或过量曝气,为硝化反应提供充足的溶解氧,并在一定程度上提高水温。提高污泥龄来使得世代周期较长的硝化菌能够在系统中顺利增殖,同时增加污泥浓度来提高硝化细菌的浓度。提前投加普罗生物硝化菌种以及促生类产品对系统中的微生物进行强化,提高硝化细菌的浓度以及其活性。低温、进水冲击引起硝化系统崩溃时,系统中的硝化细菌数量往往会急剧减少,从而导致系统处理能力下降,出水氨氮上升,此时建议补充普罗生物硝化菌种以增加系统内硝化菌数量。在以往的案例中。 江苏利水环保带您了解好氧污水处理菌种培育方法。
参与净化反应微生物的多样化,微生物专性更强;生物的食物链长,正是因为在生物膜上形成的食物链长于活性污泥上的食物链,在生物膜处理系统内产泥量也少于活性污泥处理系统,据报道由于悬浮填料一般比表面积都较大,附着在填料表面及内部生长的微生物数量大、种类多,因此污泥浓度可达普通活性污泥法的污泥浓度的5-10倍,曝气池污泥总质量浓度比较高可达30-40g/L,并且在填料单元内可以形成从细菌-原生动物-后生动物的食物链;能够存活世代时间较长的微生物,这是因为在生物膜处理法中,生物固体平均停留时间与水力停留时间无关,时代时间较长的硝化菌和亚硝化菌也能得以繁衍、增殖;由生物膜上脱落下来的生物污泥,所含的动物成份很多,比重较大,而且污泥颗粒个体较大,污泥的沉降性良好,易于固液分离,系统的处理效果不太依赖微生物的分离;能够处理低浓度的污水;活性污泥处理系统在原污水的BOD值长期低于50-60mg/L,将影响活性污泥的絮凝体的形成和增长,净化功能降低,处理水质下降。但是,生物膜处理法对低浓度污水,也能取得较好的处理效果。 江苏利水环保带您了解耐盐菌有哪些。山西除磷厌氧菌原理
江苏利水环保帮您简单梳理好氧菌污水处理的基本原理。山西除磷厌氧菌原理
厌氧工艺运行所需的HRT和污泥停留时间(Sludgeretentiontime,SRT)都很长,一般HRT都设置为24h以上,过短的HRT会导致严重的微生物流失问题。厌氧膜生物反应器(Anaerobicmembranebioreactor,AnMBR)利用膜组件的过滤作用,可以在较短HRT条件下保持较长的SRT,从而促进世代周期长的各类厌氧微生物在系统内的增殖积累。相比于常规厌氧处理工艺,AnMBR具有占地面积省、有机物去除效率高、微生物流失少、出水水质稳定、能量回收率高等优点,近年来也受到工业废水处理的重点关注。有研究对比UASB和AnMBR两种工艺处理高盐含酚废水,结果发现盐度达到26gNa+·L−1时,UASB对苯酚和COD的去除效率均明显下降,其污泥絮体出现解体以致反应器运行失败,而AnMBR对苯酚和COD的去除率为96%和80%,同时保持了更高的产甲烷能力和物种均匀度,展现了应对恶劣水质冲击的稳定性。但相较于好氧MBR,厌氧条件下AnMBR的膜污染问题往往更加严重,且清洗难度也增大,这限制了AnMBR的适用性。为此,许多研究开始开发针对AnMBR的膜污染控制方案,例如在AnMBR中添加生物炭、粉末或颗粒活性炭、海绵等作为载体材料,以及投加具有群体感应淬灭功能的菌株等。 山西除磷厌氧菌原理